If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+7x=320
We move all terms to the left:
4x^2+7x-(320)=0
a = 4; b = 7; c = -320;
Δ = b2-4ac
Δ = 72-4·4·(-320)
Δ = 5169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{5169}}{2*4}=\frac{-7-\sqrt{5169}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{5169}}{2*4}=\frac{-7+\sqrt{5169}}{8} $
| 2x^2+7x=300 | | (5x+3)^4=16 | | x=44x+3x | | 0.67q+8=q-10 | | b-1/4=7/3 | | (2x-3)-3=25 | | 4(3x-8)=36-6(x+1) | | 2.5(y+2/5)=-13 | | 15/64=3/8b | | 1/11y-6=-10 | | 4x=12/10 | | 2/9(9x-6)=1/4(12-4x) | | X+72+3x-84=180 | | .5x+x=110 | | 6+4n-4=6n+6-3n | | (-3y)/5+18(5)=87 | | 3z-8=8z+7 | | 1535=h-280 | | 2/5(d-10)=8 | | 6+g=13 | | 14x+44+-25=219 | | 3x+2/5=x+2/3 | | 1/5(b+10)=2 | | 36/xx=2/3 | | 10-2a=3a | | x-9=ⁿ | | 4x-x=-22 | | X=(4x-50) | | 2,5e+7=2,5e+7 | | 7x-9x2=5 | | -2a-8=5a-1 | | 24+3x=3x+2(3*4) |